Modeling Acoustic Backscatter: Gradual or Punctuated Evolution?

FHL 2008

LO: Evaluate basis and assumptions underlying historical and current acoustic backscatter models for fish and zooplankton.

John Horne

What is a 'Model'?

Parsimonious representation of the truth

If life was simple:

rigid body – 1 wave equation, analytic solution for 11 shapes

But

Elastic – 3 coupled scale equations, solution limited to 3 shapes: sphere, infinite cylinder, infinite rectangular slab

Model Categories & Analytic Methods

Organism or Structure:

Zooplankton, Fish, Body, Fish Swimbladder, Whole Fish

Imaging Evolution

Walleye Pollock

Limitation of Geometric Forms

"... models based on simple geometric shapes, ..., are inadequate, if only because such shapes are symmetrical with respect to the horizontal or transverse plane, while the general swimbladder is not."

"The consequence of asymmetry in swimbladder form is often observed in the significant asymmetry of dorsal and ventral aspect target strength functions of the same fish."

Geometric Form Exception

geometric shapes are viable representations when modeling resonant or Rayleigh scattering

Why?

orientation doesn't matter, targets are point scatterers

Affect of Image Resolution

What level of detail is acoustically appropriate?

KRM Model Predictions

Jech and Horne 1998

Backscatter Model Alphabet Soup

BEM - Boundary Element Method

DCM - Deformed Cylinder Model

DWBA - Distorted Wave Born Approximation

PT-DWBA - Phase-tracking DWBA

SDWBA – Stochastic DWBA

FEM - Finite Element Method

FMM - Fourier Matching Method

KA - Kirchhoff Approximation

KRM - Kirchhoff-ray Mode

MSS - Modal Series Solution

Boundary Element Method

Calculated using Hemholtz intergral for amplitude and displacement from any point on discretized surface (where l<1/3 λ)

Capabilities: valid at all frequencies, accuracy depends on quality of discretization, includes diffraction

Limitations: computationally intensive

Deformed Cylinder Model

Exact modal series solution for infinite cylinder (used for prolate spheroid swimbladder)

Capabilities: variety of material properties

Limitations: restricted angle range, arbitrary shape

Distorted Wave Born Approximation

Designed for weak scattering objects, density differences, can integrate pieces to accommodate phase differences

Capabilities: valid for all frequencies, at all angles, for any arbitrarily shaped object with small contrast in sound speed and density (body)

Limitations: weakly scattering objects (g, h near unity), inhomogenous mediums +

Fourier Mode Matching

Exact anatomical representation, exact solution for finite-length objects

Capabilities:, all frequencies, all orientation angles, all scattering geometries (back, forward, and bistatic), all boundary conditions

Limitations: far-field scattering, axisymmetric shape, numerical implementation, frequency and/or shape irregularity, conformal mapping (single-valued radius and "needle points")

Kirchhoff Approximation

Surface backscatter using Kirchhoff integral

Capabilities: valid for geometric frequencies, for any shape, high or low resolution morphometry

Limitations: typically applied to swimbladder only, restricted angle range

Kirchhoff-ray Mode

Breathing mode at or below resonance (ka <0.15), surface backscatter using Kirchhoff integral, cylindrical anatomical representation

Capabilities: any shape, unlimited inclusions, backscatter from all interfaces

Limitations: forced symmetry, restricted angle range, no

diffraction

Prolate Spheroidal Mode

Scalar wave equation, spheroidal coordinates, spheroidal wave function (angle, radial function)

Capabilities: theoretically valid for all frequencies, at all angles

Limitations: geometric representation, strong scattering objects (?)

Finite difference, time domain

Black oreo (Allocyttus niger)

plane wave, c=1491 m/s,

 $\tau = 0.32 \text{ ms}, f = 38 \text{ kHz}$

G. Macaulay

Summary Model Comparison

Model	Organism Representation	Analytic Method
BEM	Anatomical, triangular mesh	Hemholtz equation
Conformal Mapping	anatomical shape	Hemholtz equation
DWBA	deformed anatomical cylinders	line integral
KRM	anatomical cylinders	breathing mode + Kirchhoff
Finite Difference	actual shape, density	finite difference, time domain

Backscatter Model Comparisons

mapping, deformed cylinder, equicylinder

Blue Whiting (*Micromesistius australis*)

McClatchie et al. 1996

Expanded Model Comparisons

Fourier Matching Method (FMM) (aka Conformal Mapping) vs Anderson sphere, deformed cylinder, t-matrix, BEM, exact prolate spheroid, Kirchhoff approximation

Swimbladder cross-section

Model Comparison to Empirical Measures

Finite Boundary Element (BEM) Model and Kirchhoff approximation

Pollack (Pollachius pollachius)

Foote and Francis 2002

Workshop: Herring Results

Workshop: Herring Results

Comparing Models to Finite Solutions

Model Comparison to Prolate Spheroid

Model Comparison to Jack Mackerel Swimbladder

PSMS: Prolate Spheriod Modal Series; KA: Kirchhoff

Approximation; KRM: Kirchhoff Ray Mode; FE: Finite Element

Macaulay et al. 2013

Backscatter Modeling Conclusions

- Organism representations evolved from geometric shapes to anatomical detail, exact to numeric solutions
- Image resolution continues to increase, no standard
- Validation by comparison to exact solutions, other models, empirical measures
- Gradual evolution with punctuations

Kirchhoff-Ray Mode Model

KRM Backscatter Predictions

Length

Frequency

Tilt

Backscatter Response Surface: Walleye Pollock

0.0013

0.170

KRM Backscatter Ambit

Validation of Kirchhoff-Ray Mode Model

Comparison to Nakken and Olsen (1977) Atlantic cod (*Gadus morhua*) maximum target strength measurements at 38 kHz

Comparison to Jech et al. (1995) Threadfin shad (*Dorosoma petenense*) target strength measurements at 120, 200, and 420 kHz.

Comparing Models to Empirical Measures

Lavnun 120 kHz

-38 -40 Target Strength (dB) -42 -44 -46 -48 -50 -52 -54 60 80 100 120 140 160 Length (mm)

Paddlefish 200 kHz

Horne et al. 2000

Hale et al. 2003

Comparing Models to Empirical Measures

Walleye pollock

Fish Ensemble Visualization

Fish-Cam Visualization

Acoustic Fish Behavior Simulator

Model Applications: TS - length

Horne 2003

Acoustic Backscatter Characterization

Acoustic Species Discrimination

Pacific herring walleye pollock

Atka mackerel

eulachon

Gauthier & Horne 2004b

Aquatic Organism Distributions

Aggregation types: individuals; small pure groups; mixed resolvable groups; unresolvable groups

Estimating Population Abundance

Jech & Horne 2001

Walleye Pollock Tilt Distributions: 8 m³ Laboratory Tank

W Pollock Length & Target Strengths

Bering Sea, July 2000

Walleye Pollock Target Strength

Simulating TS Distributions

38 kHz 120 kHz

